
Abstract. We report ab initio calculations of the indirect
nuclear spin±spin coupling constants of PbH4 using a
basis set which was specially optimized for correlated
calculations of spin±spin coupling constants. All nonrel-
ativistic contributions and the most important part of the
spin±orbit correction were evaluated at the level of the
random phase approximation. Electron correlation cor-
rections to the coupling constants were calculated with
the multicon®gurational linear-response method using
extended complete and restricted active space wavefunc-
tions as well as with the second-order polarization
propagator approximation and the second-order polar-
ization propagator approximation with coupled-cluster
singles and doubles amplitudes. The e�ects of nuclear
motion were investigated by calculating the coupling
constants as a function of the totally symmetric stretch-
ing coordinate. We ®nd that the Fermi contact term
dominates the Pb·H coupling, whereas for the H·H
coupling it is not more important than the orbital
paramagnetic and diamagnetic contributions. Correla-
tion a�ects mainly the Fermi contact term. Its contribu-
tion to the one-bond coupling constant is reduced by
correlation, independent of the method used; however,
the di�erent correlated methods give ambiguous results
for the Fermi contact contribution to the H·H cou-
plings. The dependence of both coupling constants on the
Pb·H bond length is dominated by the change in the
Fermi contact term. The geometry dependence is, how-
ever, overestimated in the random phase approximation.

Key words: PbH4 ± NMR parameters ± Spin±spin
coupling constants ± Basis set ± Multicon®gurational
linear response

1 Introduction

In four previous publications [1±4] correlated calcula-
tions of the indirect nuclear spin±spin coupling constants

of the fourth main-group hydrides, CH4, SiH4, GeH4,
and SnH4, were reported. The results included the
random phase approximation (RPA) [1±3], the multi-
con®gurational linear-response (MCLR) method [1±3],
the second-order polarization propagator approximation
(SOPPA) [3], and SOPPA with coupled-cluster singles
and doubles amplitudes SOPPA(CCSD) calculations [4]
of all four contributions to the coupling constants. In
addition, spin±orbit corrections were calculated at the
RPA level [2] and ®rst-order estimates of ro±vibrational
corrected and zero-point vibrational averaged (ZPVA)
values of the coupling constants were evaluated at the
RPA, MCLR, and SOPPA levels of approximation [3].
In the case of CH4 second-order estimates of the ro±
vibrational corrections to the coupling constants were
also calculated at the SOPPA(CCSD) level [4].

It was found that correlation e�ects are large for the
Fermi contact (FC) and spin-dipolar (SD) terms, smaller
but usually not negligible for the orbital paramagnetic
(OP) contributions, and insigni®cant for the orbital dia-
magnetic (OD) terms. The spin dipolar contributions to
both the one- and two-bond coupling constants of CH4,
SiH4, GeH4, and SnH4 were very small, which rendered
their sensitivity to electron correlation unimportant. The
spin±orbit corrections turned out to be small, amounting
at most to only 1% for 1JSn·H in SnH4. The ZPVA
corrections dominated the ro±vibrational contributions
and are at least as large as the noncontact contributions
to the one-bond couplings and even more important for
the H·H couplings. Thus, if experimental accuracy is
desired inclusion of nuclear motion e�ects is mandatory.

As also observed by others [5, 6], calculations of
geminal proton±proton coupling constants are a chal-
lenging problem, as satisfactory agreement with experi-
mental results is often di�cult to obtain. This can partly
be explained by the large basis set and correlation sen-
sitivity usually exhibited by H·H couplings. One-bond
couplings show similar sensitivity, although to a much
lesser degree.

The purpose of the present study is to establish the
nonrelativistic limit for the indirect nuclear spin±spin
coupling constants of PbH4 and to estimate the size of
the nuclear motion and spin±orbit corrections.Correspondence to: S.P.A. Sauer, e-mail: sps@ithaka.ki.ku.dk

Regular article

Calculations of the indirect nuclear spin±spin coupling
constants of PbH4

Sheela Kirpekar1, Stephan P.A. Sauer2

1 Department of Chemistry, Odense University, Campusvej 55, DK-5230 Odense M, Denmark
2 Chemistry Laboratory IV, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

Received: 16 November 1998 / Accepted: 30 March 1999 / Published online: 14 July 1999

Theor Chem Acc (1999) 103:146±153
DOI 10.1007/s002149900027



Pb is heavy and one cannot expect agreement with
experiment without a proper treatment of the relativ-
istic e�ects. There are several ways in which one may
include them. The proper way would be a correlated
relativistic four-component linear-response calculation.
Since to our knowledge such a method has not yet been
implemented, we chose a perturbation theory approach
based on a Pauli-type Hamiltonian; however, due to the
unboundedness of the mass velocity and Darwin oper-
ators, only the spin±orbit operator was used as in the
previous study of CH4, SiH4, GeH4, and SnH4 [2]. One
might ask whether such a perturbation theory approach
is valid for calculations of the relativistic corrections to
nuclear spin±spin coupling constants involving Pb.
Apart from the study on CH4, SiH4, GeH4, and SnH4

[2], where this question was discussed in more detail, we
are not aware of any other previous attempt to
calculate spin±orbit corrections to spin±spin coupling
constants; however, relativistic corrections to polar-
izabilities have for example, been frequently calculated
using a perturbation theory approach with the mass
velocity and Darwin operators (see, e.g. Ref. [7]).
Comparison with the Douglas±Kroll approximation
showed that this approach works very well for elements
of the fourth and ®fth period, whereas larger deviations
were observed for elements of the sixth period [7].
Furthermore Nakatsuji and coworkers [8±12], and Va-
ara et al. [13] have calculated relativistic corrections to
the nuclear magnetic shielding tensor, a property closely
related to the indirect nuclear spin±spin coupling con-
stants. Whereas Vaara et al. calculated the spin±orbit
corrections from quadratic response functions as in our
work, Nakatsuji and coworkers calculated not only the
spin±orbit corrections, but also investigated the e�ect
of the scalar mass velocity and Darwin corrections by
using the spin-free Douglas±Kroll approximation. In
their studies of several mercury [9] and tungsten [11]
compounds they found good agreement with experi-
ment on inclusion of these relativistic corrections;
however, they noticed that, although the spin±orbit
corrections are important, the scalar corrections are
larger and that there is a signi®cant coupling between
them. Therefore, we are not able to predict the total
relativistic correction to the coupling constants as
would be included in a corresponding relativistic four-
component linear-response calculation [14], but our
results can give an indication of the size of the spin±
orbit e�ects.

Besides, in view of, for example, semi-empirical cal-
culations [15] or future ab initio relativistic four-com-
ponent calculations [14] it is necessary to establish the ab
initio nonrelativistic limit for the spin±spin coupling
constants, since only in comparision with the proper
nonrelativistic limit can the relativistic e�ects be quan-
ti®ed.

2 Methods

The four contributions to the isotropic part of the indirect nuclear
spin±spin coupling constant, ®rst derived by Ramsey [16], are the
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where riK , liK , and si are the position vector of electron i relative to
nucleus K, the angular momentum operator of electron i de®ned
with nucleus K as the origin, and the electron spin operator of
electron i respectively. Note that orbital as well as the spin angular
momentum operators, liK and si, have SI units (Js). The OP, FC,
and SD terms consist of sums over all excited electronic states j ni
with energies En and j0i, E0 refer to the electronic ground state.
The magnetogyric ratios of nucleus K and L are denoted by cK and
cL, respectively. All the other symbols have their usual meaning
[17]. Sum-over-states expressions as Eqs. (1)±(3) are linear-response
functions, whereas the OD term (Eq. 5) is a ground-state average
value, although it can be reformulated as a sum-over-states ex-
pression [18].

Due to the d function in the FC contribution relativistic e�ects
are expected to be largest for this term. This was con®rmed by the
calculations of spin±orbit corrections to the coupling constants of
XH4, X = C, Si, Ge, and Sn (see Ref. [2], where the method for
obtaining these corrections is also described in detail). Su�ce it to
say that the spin±orbit corrections introduce four non-zero cross-
term contributions to the isotropic part of the coupling constant, of
which we calculated two, namely the OP±FC and the OP±SD cross
terms. In a previous study it was concluded that inclusion of the OP±
FC cross term is su�cient to get a reliable estimate of the spin±orbit
e�ects. In view of the computational e�ort required to calculate the
relatively unimportant OP±SD cross term, we have chosen to omit it
in the present investigation. Further, since the one-electron spin±
orbit contribution turned out to dominate and has the opposite sign
to the two-electron contribution, it is possible to assess the impor-
tance of the total spin±orbit correction by calculating only the
one-electron correction. The validity of this approximation is, in
particular for PbH4, further supported by the fact that the ratio of
the one-electron to the two-electron correction decreases from CH4

to SnH4 in the XH4 series. Therefore, we have only included the
one-electron spin±orbit correction to the OP±FC cross term.

Previous investigations [3, 4] of the ZPVA corrections to the
indirect nuclear spin±spin coupling constants in the XH4 series
showed that agreement with experiment cannot be expected without
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inclusion of ro±vibrational e�ects. In the present study we estimated
the e�ect of nuclear motion by calculating the coupling constants
for six di�erent values of the totally symmetric stretching coordi-
nate, since this is the only normal coordinate that contributes to the
ro±vibrational averaging of the coupling constants in ®rst order.

3 Computational details

All calculations were performed with a version of the
DALTON program package [19, 20], whose property
module ABACUS had been modi®ed to perform
SOPPA [21] and SOPPA(CCSD) calculations [22] of
indirect nuclear spin±spin coupling constants, except
for the calculation of the CCSD amplitudes used in
SOPPA(CCSD), which were obtained from the integral-
direct coupled-cluster program of Koch and coworkers
[23, 24]. The Pb·H distance was set to 1.74200 AÊ , which
is close to the estimated Dirac±Hartree±Fock value [25].

3.1 Basis set

The basis set was carefully optimized for correlated
calculations of spin±spin coupling constants. We started
with the (20s16p11d7f )/[8s7p5d1f ] basis for Pb used by
Dyall et al. [25], and the (9s2p)/[6s2p] basis for H [26],
which was used in the previous calculations of coupling
constants of the XH4 series [1±4].

At ®rst, each shell (s, p, d, f ) of the Pb basis was
decontracted separately to ®nd the maximum obtainable
e�ect on the coupling constants at the RPA and valence
complete active spare (CAS) MCLR level. Subsequently,
we tried to reproduce these changes to 1% or less by only
partially decontracting the di�erent shells. This proce-
dure converged fast for the Pb·H coupling constant.
Converging the H·H coupling constant required a
larger degree of decontraction. Furthermore, a conver-

gence to 1% was not possible, since the H·H coupling
is small, between 0.5 Hz and 6 Hz depending on the basis
and correlation level. We therefore estimate the re-
maining basis set error on the H·H couplings to be
about 0.5 Hz due to lack of complete decontraction. In
addition, the Pb basis set was augmented in each set with
compact and tight functions until the change was less
than 1% in 1JPb·H and less than 0.5 Hz for 2JH·H.
Finally, polarization functions (g functions) were added
to the Pb basis set. Since the sensitivity of the one-bond
and two-bond coupling constants to the exponents of the
polarization functions turned out to be di�erent, we
added three g functions with exponents 2, 0.5, and 0.125.
The RPA and MCLR calculations did not show a
signi®cantly di�erent dependence of the coupling con-
stants on the variation of the basis set. This was true
also for the polarization functions, where one might
expect a di�erent behavior of correlated and uncor-
related methods to show up. Details of the ®nal
(22s16p12d10f 3g)/[22s12p9d8f 3g] Pb basis set are given
in Tables 1 and 2.

Although the basis set for H was optimized [26] for
coupling constants, it was done for the H·H and C·H
couplings in CH4; therefore, we decided to test if de-
contraction of the s space in the H basis set would have
any in¯uence on the coupling constants in PbH4. It
turned out that only the FC contribution to both the
1JPb·H and 2JH·H couplings was altered; however, the
changes were insigni®cant.

3.2 Correlated calculations

Correlation was included in two ways.

1. Using the MCLR method with CAS or restricted
active space (RAS) self-consistent-®eld wavefunc-
tions as reference states and di�erent active spaces.

Table 1. Exponents and contraction coe�cients of the s- and p-type functions in the Gaussian basis set for Pb

Shell Exponent Shell Exponent Contraction coe�cients

s 104324642 p 65535.5043 0.00028 0.00014 0.00007 0.00003
15626093.5 15525.3525 0.002481 0.001259 0.000631 0.0002622
2340528.5 5038.94022 0.0138384 0.00711 0.003548 0.0014845
532657.386 1923.64983 0.0565741 0.029784 0.0150502 0.00626954
150859.596 813.959465 0.170262 0.0944408 0.0479719 0.0201683
49208.5357 369.158709 0.34672 0.207595 0.108663 0.0455253
17762.3608 175.784307 0.392675 0.237925 0.122259 0.052112
6928.27349 85.8307392 0.175014 )0.109194 )0.0962798 )0.0469728
2876.44261 42.9163904
1259.68999 21.7911795
575.46689 10.2692843
228.552035 5.0168962
107.322499 1.96183081
44.330316 0.82495938
23.7415742 0.198292989
9.87476487 0.0653737
5.1346173
1.68025397
0.822037005
0.172238915
0.067542142
0.02648612

148



2. Employing linear-response methods based on Mùl-
ler±Plesset perturbation theory, here SOPPA and
SOPPA(CCSD).

The ®rst method includes what is normally denoted
static correlation, although some dynamical correlation
is incorporated when large active spaces are employed.
The second approach, on the other hand, takes into
account only dynamical correlation. Details of CAS and
RAS [27, 28] multicon®gurational self-consistent-®eld
(MCSCF) wavefunctions, the MCLR [29, 30], SOPPA
[31] and SOPPA(CCSD) [22] methods are given else-
where.

The active spaces used in the MCLR calculations are
given in Table 3. The ®rst, CAS A, is a valence CAS (6s,
6p on Pb and 1s on each H), which includes eight elec-
trons in eight orbitals resulting in 1252 determinants in
D2 symmetry. In CAS B we have, guided by the MP2
natural occupation numbers [32], included the 5d shell
on Pb; thus, in the active space CAS B has 18 electrons
distributed in 13 orbitals, giving 127975 determinants. It
may be regarded as an extended valence CAS including
the outer core (next to valence) 5d orbitals. In CAS C,
the active space includes more virtual orbitals than in
CAS A, whose selection was based on the MP2 natural
occupation numbers. The resulting CAS C active space
with eight electrons in 20 orbitals is shown in Table 3.

The next obvious step (CAS D) would be a CAS
calculation embracing the active spaces of both CAS B
and CAS C; however, this calculation with 18 electrons
in 25 orbitals, is computationally not feasible. A com-
promise is to perform a RAS calculation containing the
same orbitals. There are many ways of choosing the
subspaces for RAS calculations. In all the RAS calcu-
lations presented here, the active space of the corre-
sponding CAS wavefunction was divided such that RAS
I contained the occupied orbitals (with respect to Har-
tree±Fock), RAS II was kept empty and RAS III con-
sisted of the virtual orbitals. All singles and doubles
excitations from RAS I into RAS III are then allowed,
which corresponds to a restricted singles and doubles
con®guration interaction with optimization of the or-
bitals. Thus RAS D consists of the 5d, 6s, and 6p orbitals
on Pb in RAS I and 16 virtual orbitals in RAS III,
namely 6s0, 6p0, 5d 0, and 5f ; however, this choice for the
active space made the variational procedure replace the
6s with the 5s orbital, and hence correlates the valence
shell incompletely. The same behavior was observed in
our previous calculations on SnH4 [1]; therefore, we
concluded that it was also necessary to include the 5s
and 5p orbitals in the active space in addition to further
correlating s and p orbitals leading to 26 electrons in 33
orbitals. The size of this active space allows only a RAS
calculation, denoted RAS E, with 24531 determinants.

Table 2. Exponents and contraction coe�cients of the d-, f- and g-type functions in the Gaussian basis set for Pb

Shell Exponent Contraction coe�cients Shell Exponent Contraction
coe�cients

Shell Exponent

d 2487.69723 0.00245082 0.00129181 0.00045156 f 346.477152 0.00456457 g 2
751.579185 0.0217528 0.0114801 0.00403076 119.83564 0.0361271 0.5
290.91448 0.102737 0.0558934 0.0196645 50.2301342 0.139312 0.125
126.825859 0.287911 0.158653 0.0562038 22.8305181
58.8017533 0.442575 0.234055 0.0815415 10.5504129
28.2408638 0.293941 )0.0111774 )0.0189844 4.78302212
13.186762 1.96486696
6.08313907 0.80716795
2.53113912 0.33158484
1.05169578 0.13621514
0.386102157
0.15444

Table 3. Active spaces employed in the complete active space (CAS) and restricted active space (RAS) self-consistent-®eld (SCF ) calculations

MCSCF No. of electrons No. of orbitals Active space No. of determinants

CAS A 8 8 7±8a1,9±10t2 1252
CAS B 18 13 7±8a1,3e,8±10t2 127975
CAS C 8 20 7±9a1,4e,9±12t2,2t1 5870025
CAS D 18 25 7±9a1,3±4e,8±12t2,2t1 (not done) ±
CAS E 26 33 6±10a1,3±4e,7±13t2,2t1 (not done) ±
RAS Aa 8 8 7a1,9t2 (RASI) 8a1,10t2 (RASIII) 97
RAS Ba 18 13 7a1,3e,8±9t2 (RASI) 8a1,10t2 (RASIII) 463
RAS Ca 8 20 7a1,9t2 (RASI) 8±9a1,4e,10±12t2,2t1 (RASIII) 1441
RAS Da,b 18 25 7a1,3e,8±9t2 (RASI) 8±9a1,4e,10±12t2,2t1 (RASIII) 7465
RAS Ea 26 33 6±7a1,3e,7±9t2 (RASI) 8±10a1,4e,10±13t2,2t1 (RASIII) 24531

a Same active space as the corresponding CAS. Single and double excitations from RAS I to RAS III
bCorrelates erroneously the inner valence orbitals
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In addition, similar RAS calculations corresponding
to CAS A, CAS B, and CAS C were carried out. From
the di�erences between these CAS and RAS calculations
and from the results obtained with RAS E one can
estimate what the result of a calculation with CAS E
would be.

4 Results

4.1 Correlation and spin±orbit corrections
to the coupling constants

The results for the four nonrelativistic (FC, SD, OP,
OD) contributions and the one-electron part of the FC±
OP spin±orbit correction to the 1JPbÿH coupling con-
stant obtained with the di�erent methods are given
in Table 4. Most striking is the complete dominance of
the FC term. The only other signi®cant term is the
relativistic spin±orbit correction, which estimated from
the one-electron part of the FC±OP cross term amounts
to about 10% of the FC term at the RPA level. The
other three nonrelativistic contributions to 1JPbÿH are
less than 1% of the FC contribution. Since the SD
contribution is unimportant and computationally very
expensive, we calculated this term only at the RPA level
and for the valence CAS (CAS A).

The FC contribution to the Pb·H coupling constant
exhibits the usual strong correlation dependence (be-
tween 14 and 26%), almost independent of how corre-
lation is treated. The FC terms obtained with RAS B
and RAS C, which only include single and double ex-
citations, di�er by less than 1% from the corresponding
CAS B and CAS C results indicating that the e�ect of
higher excitations is negligible, in agreement with our
previous results [1]. We therefore expect the RAS E re-
sults to be accurate estimates of the corresponding CAS
E values. Analyzing the data in more detail, we note that
the valence CAS (CAS A) result is almost 400 Hz
smaller than the RPA result. Inclusion of the inner va-
lence, 5d, orbitals (CAS B/RAS B) does not signi®cantly
change this, whereas inclusion of virtual orbitals (CAS
C/RAS B) reduces the FC term by an additional 94 Hz;
however, combination of these two active spaces and
inclusion of the inner valence 5s and 5p orbitals together
with the corresponding correlating orbitals in RAS E
again leads to an increase in the FC term. The two
perturbation-based methods, SOPPA and SOP-

PA(CCSD), give results for 1JPb·H close to CAS A and
CAS C, respectively. Most of the correlation contribu-
tion to 1JPb·H can thus be found using a valence CAS or
SOPPA, which give the same sign and approximately the
same magnitude, similar to what was found for the
J (X·H) coupling constants of the other molecules in
the XH4 series [3]. From a comparison of the RPA and
CAS A results, the SD term can be seen to be very
sensitive to correlation; however its small size makes this
fact unimportant. The remaining two terms, OP and
OD, are slightly a�ected by correlation.

The situation is quite di�erent for the geminal pro-
ton±proton coupling constants 2JH·H shown in Table 5.
First, the FC, OP, and OD terms are all of the same
order of magnitude. The SD term and the relativistic
spin±orbit correction, estimated from the one-electron
part of the FC±OP cross term at the RPA level, are
much smaller, although their contribution to the total
2JH·H coupling constant is somewhat larger due to the
near cancellation of the three main terms. The SD con-
tribution was thus only calculated at the RPA and CAS
A level.

Secondly, the FC contribution to 2JH·H is much
more sensitive to correlation e�ects and whether per-
turbation-theory-based or variational methods are used
to treat correlation. The valence CAS (CAS A) reduces
the FC term to about 12% of its RPA value. Inclusion
of the inner valence 5d orbitals in CAS B and RAS B
leads to an increase in the FC term again, although it is
still smaller than at the RPA level; however, CAS C and
RAS C, which include more virtual orbitals than CAS
A, predict the FC term to be 50% larger than its RPA
value. RAS E, which is a combination of the active
spaces of RAS B and C and contains additional inner
valence (5s, 5p) and correlating orbitals, gives almost the
same result as CAS C and RAS C. As for the 1JPb·H

coupling constants, the di�erences between the CAS
and corresponding RAS calculations are so small that
it is safe to expect the CAS E results to be only
insigni®cantly di�erent from the RAS E values. The
two perturbation-theory-based methods, SOPPA and
SOPPA(CCSD), on the other hand increase the FC term
by more than a factor of 4. This is consistent with results
for the geminal coupling constants of SiH4, GeH4, and
SnH4, where for a given X-H distance the 2JH·H cou-
plings obtained with SOPPA are markedly larger than
those obtained from the RPA or any MCLR calculation
[3]. Finally, the SD contribution as well as the other two

Table 4. One-bond, 1J207Pb·1H,
coupling constant of PbH4 (in
hertz), using di�erent correlated
methods: Fermi contact (FC);
spin dipolar (SD); orbital para-
magnetic (OP ); orbital
diamagnetic (OD); spin±orbit
(SO) correction

aOnly the one-electron part
bWithout the SD term
cWithout the SD and OP terms

Method FC SD OP OD OP-FC-SOa Total

RPA 1806.94 )0.36 )6.22 0.02 )198.60 1601.78
SOPPA 1449.96 ± )5.93 0.02 ± 1444.05b

SOPPA(CCSD) 1374.20 ± )6.11 0.02 ± 1368.11b

CAS A 1424.00 0.14 )5.75 0.03 ± 1418.42
CAS B 1414.25 ± )5.65 0.02 ± 1408.63b

CAS C 1331.73 ± ± 0.02 ± 1331.75c

RAS A 1448.65 0.12 )5.84 0.02 ± 1442.95
RAS B 1440.05 0.09 )5.71 0.02 ± 1434.44
RAS C 1382.84 0.11 )6.10 0.02 ± 1376.87
RAS E 1560.69 ± )5.46 0.02 ± 1555.25b
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noncontact terms are not a�ected by inclusion of elec-
tron correlation.

4.2 Geometry dependence of the coupling constants

Figures 1±3 show the dependence of the nonrelativistic
1JPb·H and 2JH·H coupling constants on the symmetric
stretching of Pb·H bond length, which is the only
normal coordinate contributing to ®rst order. The
calculations were carried out at the RPA and valence
CAS (CAS A) level only, since in the previous study of
the other molecules in the XH4 series [3] the CAS A and
SOPPA coupling constant curves turned out to be nearly
parallel. Also, as for the other molecules the RPA
1JPb·H and 2JH·H coupling constant curves are steeper
and more curved than the CAS A curves, thus leading to
an overestimation of the ZPVA correction. In the case of
1JPb·H coupling the FC term obviously determines the
geometry dependence, because of its size; however, also
for the 2JH·H, where the FC, OP, and OD contributions
are of the same order of magnitude, the FC term is the
most geometry dependent contribution as can be seen
from Fig. 3. It is interesting to note that the SD term is
almost independent of the bond length, while the OP
and OD contributions exhibit an opposite geometry
dependence and their sum increases only very slightly
with the bond length. Thus, also in the case of 2JH·H the
change in the total coupling constant is determined by
the FC term.

5 Summary and conclusions

The calculations reported here show that the general
conclusions from the previous studies of the spin±spin
coupling constants of SiH4, GeH4, and SnH4 also apply
to PbH4. The FC term is the all-dominating contribution
to the Pb·H coupling and, thus, also determines the
geometry dependence. Correlation does not change the
importance of the individual contributions, although the
FC term is reduced by about 20% and the SD term
changes its sign. The spin±orbit correction, here approx-
imated by the one-electron part of the FC±OP cross
term, is the second most important contribution to the
Pb·H coupling in contrast to the other XH4 molecules.
At the RPA level it amounts to 10% of the FC term and
is thus, as expected, much larger than for SnH4. Since

scalar relativistic e�ects can also be expected to be very
important for PbH4, it is not possible from our
calculations to estimate the total relativistic correction
to the coupling constants as would be inherently
included in a four-component relativistic linear-response
calculation [14]; however, our results can serve as
uncorrelated and correlated nonrelativistic reference
values. Comparison of our nonrelativistic results with
the results of future uncorrelated and correlated four-

Table 5. Two-bond, 2J1H·1H,
coupling constant of PbH4 (in
hertz), using di�erent correlated
methods

aOnly the one-electron part
bWithout the SD term

Method FC SD OP OD OP-FC-SOa Total

RPA 1.95 )0.01 5.00 )7.06 )0.09 )0.21
SOPPA 9.25 ± 5.02 )7.07 ± 7.16b

SOPPA(CCSD) 8.49 ± 5.02 )7.06 ± 6.44b

CAS A 0.24 )0.01 5.00 )7.05 ± )1.82
CAS B 0.65 ± 5.00 )7.05 ± )1.40b

CAS C 3.05 ± ± )7.05 ±
RAS A 0.29 )0.01 5.00 )7.05 ± )1.77
RAS B 0.66 )0.01 5.00 )7.05 ± )1.41
RAS C 3.06 )0.01 4.99 )7.05 ± 0.98
RAS E 3.07 ± 5.00 )7.06 ± 1.01b

Fig. 1. Total 1J207Pb·1H coupling constant at the random phase
approximation (RPA) (n) and complete active space (CAS) A (s)
level
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component relativistic calculations will give the total
relativistic correction to the coupling constants. Fur-
thermore, comparing this total relativistic correction
with the spin±orbit contribution of this work will yield
an estimate of the nonscalar relativistic correction,
which cannot be obtained directly from four-component
relativistic linear-response calculations.

Also for the calculated H·H coupling constants
agreement is found with the trends observed in the other
molecules of this series. The FC term is thus not the
dominating contribution, since the OP and OD contri-
butions are also of equal importance. Correlation a�ects
again only the FC term; however, as also seen for GeH4

and SnH4, the di�erent correlation methods do not
agree on the sign of the correlation correction.

The geometry dependence of both spin±spin coupling
constants is overestimated at the RPA level. The Fermi
contact contribution exhibits the largest bond-length
dependence and thus determines the form of the cou-
pling constant surfaces.
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